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Abstract—The stresses at the contact of two one-dimensional wavy surfaces in the presence of
adhesion between them are found by the combination of the solution in the absence of adhesion
due to Westergaard (1939, J. Appl. Mech. Trans. ASME 6,49-53), with that for an array of collinear
cracks due to Koiter (1959, Ing. Arch. 28, 168-172). The mean contact pressure necessary to obtain
full contact is found. Separation arises from small flaws at the interface. The relation between the
size of the flaw and the mean tension to break the joint is obtained. The corresponding relationship
is also found for a surface having orthogonal two-dimensional waves of equal amplitude and
wavelength.

I. INTRODUCTION

The analysis in this paper relates to the conditions of adhesion between two elastic bodies
whose surfaces, though nominally flat, have a sinusoidal undulation of small amplitude.
The bodies are represented by two elastic half-spaces. If the waves on each contacting
surface are one-dimensional, parallel and of equal wavelength 4, the gap between them
prior to deformation can be expressed by

h(x) = A{1—cos (2nx/1)}, )

in which A « 4 [see Fig. 1(a)]. When the surfaces are pressed into contact, adhesion between
them can arise through the action of molecular forces, if the surfaces are sufficiently clean,
or through a thin film of adhesive (glue). Adhesive strength is characterised by the work of
adhesion w, which is the work required to separate a unit area of adhered interface, and is
usually measured by some form of peel test [e.g. Crocombe & Adams (1981)]. Where
adhesion is due to surface forces,

w=Ay =7y +7—7, 2

where y, and y, are the surface energies of each surface and y,, is the energy of the interface.
Adhesion arising in this way has been widely studied and measured, in particular using (i)
cleaved mica (Israelachvili, 1985) and (ii) soft, smooth rubber (Roberts, 1975). In the case
of an interspersed layer of glue, the thickness of the layer is much less than the amplitude
of the wave.

The contact of elastic spheres was investigated theoretically and experimentally by
Johnson et al. (1971) (JKR theory). It was shown that the area of contact under a
compressive load exceeded that given by the Hertz theory, that the spheres remained in
contact over a finite area when the load was removed, and that it required a tensile force
to pull the spheres apart, given by

P. = (3/2)nwR, (3)

where R is related to the radii R, of the spheres by R = R/R,/(R;+ R,).
The JKR theory was developed through a balance of changes in surface energy and
elastic strain energy, as in the Griffith’s theory of brittle fracture. Later Maugis and Barquins
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Fig. 1. Contact of a flat surface with an elastic wavy surface: (a) undeformed gap 4(x) expressed

by eqn (1); (b) complete contact, p = p*; (¢) partial contact on strips of width 2a. p’(x) = pressure

distribution without adhesion; p”(x) = stress distribution for an array of cracks of length 25;
p(x) = p’(x)+p"(x) = surface traction with adhesion.

(1978) showed how the same results could be obtained more directly by the application of
linear elastic fracture mechanics. This is the approach which will be followed here.

2. ANALYSIS

The contact of two slightly wavy half-planes in the absence of adhesion was analysed
first by Westergaard (1939), using the stress function which carries his name, and later by
Dundurs et al. (1973) by reducing the problem to an Abel integral equation. The half-
planes have Young’s moduli E,, and Poisson’s ratios v;,. We write 1/E* =
[(1 =v})/E" + (1 —v3)/E,], and the interface is assumed to be frictionless.

If the pressure p’, averaged over the whole surface, exceeds the value p* = nE*A/A,
contact will be made throughout the whole interface [Fig. 1 (b)]. If 5° < p*, contact occurs
on strips of width 2a located at the crests of the waves, given by

(rajs) = sin™! (p'/p*)"2. 4
The pressure distribution at each contact (—a < x < a) is given by

_ 2p'cosy

Px) sin® ¥/,

(sin® y, —sin” ) (5)

where ¥ = nx// and ¥, = na/Z, [see Fig. 1(c)].

We now imagine that the mean pressure is reduced from p’ to g by the superposition
of a negative (tensile) pressure p”, during which the surfaces in the contact area
(—a < x < a) remain adhered together. It will be readily appreciated from Fig. 1(c) that
this step corresponds to the tensile loading of a plane which contains an array of equally
spaced cracks, each of length 2b (= A—2a). This problem has been analysed by Koiter
(1959). The stress across each ligament (—b < x < b) is given by
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(&) = —p'[1 — {sin (zb/A)/sin (n&/2)}?] 17

(6)

i.e.
p'(x) = —p"(1—{cosy,/cosy}>] .

a mode I stress intensity factor at the edges of the

This stress distribution gives rise to
(7

contact:
—p'{itan (nbjA)}'"?

I

K;
—p"{icosy,}'"?.

The net pressure distribution at the contacts is then given by the superposition of p’(x) and
p"(x). It is compressive in the centre (x = 0) and has tensile singularities at the edges

We can now determine the equilibrium value of a by equating the elastic strain energy

(x = a).
release rate G to the work of adhesion w, whereby
i
G = 2 =w
ie.
_,Acoty,
S E* = W.

Then substituting in eqn (7) gives

P
p* Ap*?
= —aftany,}'? (8)
where
_[2E*'2 2w )72
“T U PAE

The net mean pressure j is related to the equilibrium contact size a by

p—/ p/l
A

ﬁ* "'Ul

ie.
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Fig. 2. Partial contact : variation of semi-contact width @ (normalised by wavelength 1) with mean
pressure (normalised by p*).

Blp* = sin® Y, —a{tany,} ' 9)

This relationship is plotted in Fig. 2 for a series of values of a.
When adhesion is absent, « = 0 and eqn (9) reduces to eqn (4). When ¢, is small, so
that contact is confined to narrow strips close to the crest of each wave, eqn (9) reduces to

AE*a? ,
p = ”-;i — (2nE*wa}'?. (10)

The load per unit length of each ridge P = Ap and the radius of curvature of a crest

R = }2/4n*A, whereupon eqn (10) may be written as

nE*a*

P
4R

— (2nE*wa)'’?. (11)

This is the relationship for the contact of two elastic cylinders with parallel axes in the
presence of adhesion.

3. INTERPRETATION

Since the solids are elastic and surface forces are conservative, bringing the surfaces
together and separating them under equilibrium conditions, i.e. following one of the curves
in Fig. 2, is a reversible process. However this is not what normally happens in practice, as
we shall see in the following discussion. The non-dimensional parameter «” represents the
ratio of the surface energy in one wavelength to the elastic strain energy when the wave is
flattened. The curve of (5/p*) against (na/2), for & = 0.3, is reproduced in Fig. 3. It has
zero-crossings at A and B, a maximum (pressure) at C and a minimum (i.e. maximum
tension) at D. The value of w for metals is about 1.0 J/m? and that for rubber about 0.03
J/m?; corresponding values of E* are 3x 10 and 10° N/m? Taking a representative
wavelength 1 = 10 mm, a value of « = 0.03 is obtained by an amplitude A ~ 3 um for
metals and ~80 um for rubber.

If two such surfaces are brought into contact under zero load, they will immediately
snap together under the action of surface forces until equilibrium is reached at point B in
Fig. 3. This phase of the process is irreversible and takes place at a speed approaching the
Rayleigh wave speed. The work done by the surface forces (i.e. the reduction in surface
energy) exceeds the increase in elastic strain energy associated with the deformation at
point B, the excess being dissipated in the radiation of stress waves.
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Fig. 3. Contact of elastic wavy surfaces with adhesion : compression—tension cycle. A mean pressure
P. s required to make full contact. A tensile stress of (p* — ) is required to propagate a flaw of
width 25).

To increase the contact area further, a compressive load (positive p) is required which,
if applied slowly, follows the equilibrium curve from B to C. This point is also unstable;
beyond it the surfaces snap into complete contact at ¢ = 4/2, and remain so when the load
is removed.

To separate the surfaces a tensile force (negative p) is required. The singularity in the
equilibrium curve implies that a perfect joint exhibits the theoretical strength of the interface,
which is much larger than is generally observed in practice. To obtain realistic values for
the strength, as in fracture mechanics of brittle materials, interfacial flaws of finite size must
be invoked. In the present situation they could arise from trapped air, contaminants, or
fine scale roughness of the surfaces.

We shall start by assuming that a flaw of width 25, in which no surface forces act, is
located at a trough (x = 2/2). The condition of zero surface forces within the flaw can be
thought of as the superposition of the pressure necessary to keep the surfaces in contact,
given by

p(8) = p*{1—cos 2n&/A)}, (12)

and an equal negative pressure acting on the surfaces of the flaw (—b; < £ < b;). Provided
b; «< /2 the pressure within the flaw may be approximated by the parabolic relationship

p(&) = (p*—p)—2m*(&/A)’p*. (13)
These forces give rise to a stress intensity factor at the ends of the flaw, given by
b
K = (Nbf)_”zj OB +E)/(b— )} 1 d¢
—b

= (nbe)~ ' nl(p* —p) — (mbe/2)*]. (14)

The flaw will extend when K7 /wE* = w, at a stress p; given by

[, (Y
AR N s
~ l—a(A/nby), (mbi/i) < a. (15b)

It may easily be shown that eqn (15b) expresses the condition that a plane-strain crack of
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length 2b; in an infinite solid should propagate under a far-field stress of (p* —p). If this
critical value of tension (negative p) is exceeded, the flaw will expand in an unstable way,
leading to complete rupture of the joint.

If the approximation in eqn (15b) is maintained (i.e. nby/A « a), it is simple to find the
critical stress to propagate a small flaw at any location x = x;. At this position the pressure
to maintain full contact is given by eqn (12). Hence, for a flaw located at x = x;, eqn (15b)
for the critical stress becomes

PIp* = —cos 2ax¢/A) —o(d/nby). (16)

For a flaw located at a trough (x; = 4/2), eqn (16) reduces to eqn (15b). In any other
position the tension required to propagate the flaw increases, being greatest at a crest,
where the contact pressure tending to keep the flaw closed is a maximum.

So far the discussion has assumed that the solids are perfectly elastic, but most real
materials display some inelasticity at the high local strains which occur at the edge of an
adhesive contact. Rubber, in particular, which shows strong contact adhesion, exhibits
strong viscoelastic behaviour at the high strain rates which occur when the contact edge is
moving. Also most adhesives have viscoelastic properties. If the surfaces are separating,
the external force has to overcome viscoelastic losses in addition to surface energy, leading
to an apparent work of adhesion w, which exceeds the intrinsic surface energy w, by a
factor £’ (>1.0). This factor is a material property which increases with the speed of
movement v of the edge of the contact (Maugis and Barquins, 1978; Greenwood and
Johnson, 1981), i.e.

w. = k'(v)w,.

Where the contact area is increasing, it is the action of surface forces which has to overcome
the viscoelastic losses in addition to increasing the strain energy, so that the situation is
reversed and the effective work of adhesion is reduced, i.e.

Wl = K" )wo,

where k”(v) < 1.0 (Johnson, 1976). Experiments suggest that at typical velocities £” > 1.0
and k" « 1.0.

We can now reconsider the previous loading and unloading cycle for such a material.
The analysis leading to Fig. 3 still holds, but the value of o depends upon the effective work
of adhesion w, and is dependent upon the rate of change of contact dimension. During
compression the effective work of adhesion is negligible (k" « 1.0), so that « can be taken
to be zero. The contact area increases with j according to the equilibrium curve ; a pressure
P = p* is required to achieve full contact.

To initiate peeling from a flaw of size 2b,, the (tensile) value of p must exceed that
given by eqn (15a), with w = w,. When that is so, peeling will proceed under quasi-static
(equilibrium) conditions. The rate of peeling will vary such that, at each value of a, the
value of a(v) is such that equilibrium conditions are maintained.

4. TWO-DIMENSIONAL WAVINESS

The adhesionless contact of a flat surface with a surface which has orthogonal waves
of equal amplitude and wavelength has been investigated by Johnson et al. (1985). The
undeformed gap between the surfaces may be expressed :

h(x,y) = A[l — cos (2mx/4) - cos (2my/A)]. a7

The surfaces first touch at the crests of the waves, located at the points (0,0) and (4/2,4/2).
The troughs are at points (4/2,0) (0,4/2); the mid-point (1/4,4/4) is a saddle point. If the
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mean pressure p exceeds p*, where in this case p* = ﬁnE *A/A contact is complete and
the distribution of pressure is given by

p(x,y) = p+p*cos (2nx/l) cos (2ny/A). (18)

When p < p* contact is not complete and the problem requires numerical solution since
the shape of the discrete contact areas changes during loading. At light loads the contacts
close to the crests are circular and behave like independent Hertz contacts of spherical
bodies. At the other extreme, when complete contact is approached, regions of no contact,
located at the troughs, are also approximately circular. An asymptotic solution for this
latter situation was obtained by Johnson ez al. (1985), where the gap between the surfaces
was found to be

2p*b
nE*

g9(p) = [(1=p/p*)— 5 (1+2p7)](1—p*) "2, (19)

where b is the radius of the no contact area, p = r/b, (p < 1.0) and r is the radial distance
from the trough (4/2,4/2). The value of » was determined by the condition that, in the
absence of adhesion, the surfaces must separate smoothly at the edge of contact, i.e.
dg/dp = 0 as p — 1.0. For this condition to be satisfied

i(ﬁ)x - 1_ E (20)

With adhesion a singularity in tension, corresponding to a stress intensity factor K; would
be expected at the edge of the contact. Its value is related to the asymptotic shape of the
gap (“‘crack opening displacement”) by

Ko { 9(p) }
(nb) p— 1 (1¥pz)1/2

*

2p , )
= [(1=pip*) — 3 (nb]4)’]. (21)
Again, using the relationship Ki/2E* = w, eqn (21) becomes
3/nb\* m [2E*w\'?
1—F/p* == = 22
=322 () o

which compares with eqn (20) for zero adhesion. For a small circular flaw of radius &
(« 1/2) located at the trough, we can write

= ®a, \1/2
ﬂ:l_ﬁ(zE w) . 23)
P

This expression is equivalent to eqn (15b) for a one-dimensional wave. It prescribes the
mean negative pressure j;necessary to initiate peeling from a flaw of radius &, in the manner
described in the previous section.

In the case of two-dimensional waviness, small gaps between the surfaces located in a
trough are isolated from the environment so that their behaviour could well be influenced
in practice by trapped air. If air were trapped on loading it would be pressurised to such
an extent that complete contact could not be achieved. This entrapment would then
constitute a “flaw” which would promote peeling under tension, as prescribed by eqn (23).

SAS 32:3/4-K
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Alternatively, a flaw which contains no gas will require a mean tensile stress which is
enhanced by the value of the ambient atmospheric pressure in order to initiate separation.

Finally it has to be recognised that real surfaces are likely to have a fine scale roughness
of a more random nature superimposed upon the waviness considered above. A distribution
of asperity heights has the effect of reducing the overall adhesion energy by a process in
which compressive forces between the higher asperites break the adhesive junctions between
the lower ones. This process has been modelled by Fuller and Tabor (1975).
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